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ELECTROMAGNETIC FIELDS IN AN N-LAYER
ANISOTROPIC HALF-SPACE{

DOUGLAS P. O’BRIEN* axp H. F. MORRISON™

From Maxwell’s equations and Ohm’s law for a horizontally anisotropic medium, it may he shown that two inde-
pendent plane wave modes propagate perpendicular to the plane of the anisotropy. Boundary conditions at the
interfaces in an n-layered model permit the calculation, through successive matrix multiplications, of the fields at the
surface in terms of the fields propagated into the basal infinite half space. Specifying the magnetic field at the surface
allows the calculation of the resultant electric fields, and the calculation of the entries of a tensor impedance relation-
ship. These calculations have been programmed for the digital computer and an interpretation of impedances ob-
tained from field measurements may thus be made in terms of the anisotropic layering. In addition, apparent resis-
tivities in orthogonal directions have been calculated for specific models and compared to experimental data. It is
apparent that the large scatter of observed resistivities can be caused by small changes in the polarization of the

magnetic field.

INTRODUCTION

Magnetotelluric  studies have, in general,
shown that electrical conductivities within the
earth are strongly directional. This is particularly
evident in the apparent resistivity measurements
in orthogonal directions carried out by Fournier
(1962, 1963a, 1963b), Bostick and Smith (1962),
and Hopkins and Smith (1966), to mention only
afew. For a uniform plane wave normally incident
on an anisotropic half space, Cantwell (1960)
derived expressions for the E and H fields in
terms of an admittance tensor:

n
HII

Later, Mann (1965) discussed the theory of a
plane wave incident on an anisotropic half space.
As Cantwell pointed out in his study, the advan-
tage of the admittance (or impedance) tensor
notation is that the tensor entries uniquely char-
acterize the half space, regardless of the model
chosen. Bostick and Smith (1962) obtained ap-
parent resistivities irom the values of ¥,y and
V31 when the measuring axes had been computa-
tionally rotated to a position which minimized
the diagonal entries. If it were assumed that the
earth model could be described by an anisotropic

_~Y11 le'Ez
Va1 Vool |E,|

half space, these apparent resistivities would be
the principle values of this anisotropy. They
could equally well represent the effective resis-
tivities parallel and perpendicular to a linear
inhomogeneity.

In addition, it is apparent {rom the field results
that the “anisotropy” is frequency dependent
indicating changes of anisotropy with depth.

In this study it is assumed that the directional
properties of resistivity within the earth can be
described by a simple anisotropy and, further, that
changes in anisotropy with depth can be approxi-
mated by an n-layer model. While this may be a
rather idealistic approach to actual geologic situa-
tion, it is certainly a good approximation for
studying the gross features of magnetotelluric
field results. In the first part of the study we
develop the relationships between E and H, in
terms of tensor impedances, at the surface of
an #n-layered medium where any or all of the
layers may be anisotropic. These results then
allow specific model calculations for the inter-
pretation of experimentally dctermined imped-
ance tensor entries. In addition, apparent re-
sistivities can be calculated in two orthogonal
directions; and it is shown that the very large
scatter in these values obtaincd in conventional
magnetotelluric soundings may be accounted for
by small changes in the azimuth of polarization
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of the magnetic field at the surface of such a

model.
THEORY

The model consists of # homogeneous anisotropic
plane parallel layers underlain by a homogeneous
isotropic half space. In all layers, one of the
principle axes of the conductivity anisotropy is
perpendicular to the interfaces, and this is de-
fined as the z axis. The other two lie in the x—y
plane, parallel to the interfaces. The principle
horizontal conductivity ¢ lies at an angle ¢ to
the x axis (Figure 1).

We shall investigate a uniform plane electro-
magnetic wave propagating along the z axis. The
conductivity along the z axis will thus not enter
our calculations since, by the definition of such a
wave, J,=0. We may then write Ohm’s law
relative to a fixed x—y coordinate frame

|31 = lownl [E]

where

|om| =

Since we have assumed plane waves propagating
along the z axis, we may assume a solution of the

form

E E

} — } g—Jottitz (2)
H H

for the resulting fields.

If we further restrict our discussion to typical
earth materials at low frequencies, displacement
currents are negligible in comparison with the
conduction currents. From Maxwell’s equations,

oH
VXE=—py—
ot
V X H = al,mE
we may write for the tangential components,
using the previous form for solution (2)

JRE, = — juwucH,
JRE; = jou H,

—]kHy = 0'11Ez + 0'12Ey
]ka = 0'21Ez + UzzEy (3)
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Fic. 1. Relationship of conductivity anisotropy to
coordinate axes.

(62 — o1) singp cos ¢

: (1)

o1sin?¢ + o2 cos? @

where the ¢’s are determined by the entires of
(1). For a solution to the set of cquations (3) to
exist, the determinant of the cocfficients of the
field quantities E;, E,, etc., must he set equal to
zero. This allows a solution for %,

» jw#o
2

k2

{ (o1 + o22) £ [(011 + 022)?

+4(o19091 — 011022>]1/2}

and upon substitution of the o,,’s from (1) we
find that

k1=
k2=

H+

and

(o spo) 267719, 4

(o10p0) 26719,

H

Each of the values for % corresponds to a linearly
independent solution for the tangential fields.
The plus or minus sign refers to waves propagat-
ing in the plus z and minus z dircctions, respec-
tively. The subscripts 1 and 2 indicate that two
independent modes can propagate in either direc-
tion along z. The propagation constants for each
mode are identical to those derived for an infinite
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homogeneous isotropic medium with conductivity
g Or 0.

Let us now specialize this development to a
layered sequence of anisotropic conductors as
shown in Figure 2. For a horizontal field compo-
nent propagating in layer ¢ of Figure 2, let the
propagation constant be given by

+ byt

L o
+bnt e +Exlzejkl z
_Ezli

. i
+Eyl’z — +Eylze]k'1 z

= "Ez!le—ikl z

. . .
_Eyl"« = _Eul'le_]kl z

O’Brien and Morrison

the subscript m referring to the mode correspond-
ing to either o, or o2. The following notation will
be used for the field quantities. I'or a field quan-
tity measured along either the .« or y axis in the
ith layer, whose propagation constant is kL the
amplitude is represented by

2 Z i

z
+7 + .+
i—Ezma 7bllm: 7H1m7 or 7H.7/m,

where the plus or minus superscript indicates
propagation in the plus or minus z direction re-
spectively. For example, _Eil represents the x
component of the electric field propagating in
the negative 2 direction in mode 1 and in the ith
layer.

Boundary conditions between each layer are
determined by the identities:

n X (Erorar — E’?E)hx\ ) =0
n X (H'zl“OTAL - HlTJ;ll\I) =0 (5)

where n is the unit vector normal to the interface.

It is important to note that the vectors Erorar
and Hrorar, are the superposition of the down-
ward and upward propagating solutions, and each
of these solutions is, in turn, the superposition of
the two independent conductivity modes dis-
cussed previously.

By definition, the electric components of a plane
wave propagating along z in the ¢th layer are
given by:

Vi = +E, it e
_E12Z —_ "‘Ezzle_.?kz z
+hy21 — +Ey2tejk2 2

~E,; = +Ey2ie—jlc21z (6)

from (3), the corresponding magnetic components are represented by:

=k .
TH, ' = ——TE,°
WHo
. R .
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wlo
ig il B
H,i= E.p°
Wiy
X —ky .
_H”‘z — —Ezlz
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o =kt
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o Ry
+Hy21 i +E221
wWio
ke
._H!I‘)‘l — - 4191 (I)
Wity
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where the factor exp (—jwf) has been omitted
for simplicity in (6) and (7).
From (3), (6), and (7), the relation between

the individual electric components in the dth
medium is given by:

tE, = — tan ¢ B¢

tE, = tan ¢, E,,°

—E, = — tan ¢y £)¢

~E.’ = tan ¢; £} (8)

where ¢; is the direction of the major conductivity
lineation relative to the fixed x axis at the surface.

Superposing equations (6) (7) and (8), we
have for the electric and magnetic components
of a wave propagated in both the negative and
positive z direction:
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Thus, the four field components in an anisotropic
medium can be expressed in terms ol the four
independent variables TE. ¢ TE.‘ "B, and
—E,,.

The exp(—jwt) time dependence is implied in
equation (11).

Let z; be the interface between the ¢ and i+1
layers (Figurc 2). Boundary conditions require
that the total horizontal clectric and magnetic
components be continuous at 2;, i.c.

H;E)TAL = H;TOTAL
41 1
Hyrorar = Hyrotan,
i+1 i
Ezrorar = Ezroran.
i+l i
Eyrorar = FyToratL

PROPAGATION VERTICALLY DOWNWARDS

. Lot L8
+Euz = +Ey2181k2 2 — tan ¢i+Exlte,7k1 z

+Lx1 = +Ezlze_7k1 z + tan ¢i+Ey2@eM2 z

; kit LA kst i
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Wiko Wity
o ke i o .
+Hy1 = +E11’6] 12z _|_ —— tan ¢i+Eyr_;ze] 2z, (9)
WLy WU
PROPAGATION VERTICALLY UPWARDS
e . - .ki _ et
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) L o
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Superposing (9) and (10), we have for the total component electric and magnetic fields in the ¢th

layer:
. kli + . ‘ki . 'k" kzi L1 R |
H itorar, = — ( Ezlzey 12 — —Ezlze—a 31 z) tan ¢; + (—Ey2ze—1k2 z +],‘sze]k2 z)
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From (11a) through (11d), the boundary conditions may be expressed in matrix form:

i+1
+Ezl1'+
-E, i+l

| 7o+1 | . “
v ' -i-'E;”H—i
_Eil +1

2

where
kli tan ¢,‘8jk“‘z" kli tan ¢i6—jk”zi
kliejkxizi — klig—jkl"ﬁ
i = _
r edkiizi gtz

—tan ez —tan ¢,e Hrw

kot tan ¢~;6jk2“f

+Ezli
= |-, 7 (12)
PR
~Ey,
— k2e+jkz"z,‘ kzie—jkzizi

—kzi tan ¢.‘6*ﬂ“‘22i)
tan ¢qe/tris tan ¢ ez
) ' (13)

ez e dkatz;

and where 7% is identical except that all superscripts are changed to 741 and the subscripts on ¢

only are changed to 7+ 1.

The column vector for the electric fields in the ¢+1 layer may be determined from (13)

+E31i+l +E21i
—E. i+1 ——LEz i
1 . _ , 1

+ o = [ Tz+l| 1. | T@| . N A (14)
By, Ly,
_ i1 _ .
E1I21+ Ellzl

Matrix equation (14) may now be rewritten,
for convenience, as

i1 |

= | diw] | E

| E .
The calculation of the A%, tensor entries is ex-
tremely tedious and will not be presented here.

We now have a matrix which allows us to cal-
culate the fields in the 741 layer from those in
the 4th, and similarly those in the {42 layer from
those in the 741,

+1

i+2
| =1 Aum

| E | Ain] | E]

and so on, for as many layers as comprise the
model. This is simply a matrix notation for solv-
ing the series of 4 (z4-1) equations, correspond-
ing to the boundary conditions at each layer on
an n-layered medium, together with the boundary
conditions between the surface layer and free
space.

For the n-layer model of Figure 2, the origin of
the coordinate system has been moved to the
interface of the half space. The matrix multipli-
cation giving the fields IE"I in the nth layer in
terms of the IE"‘ propagated into the half space

has been programmed for an IBM 7094 as has
the final matrix operation giving the fields at the
surface, IT"IIE"l, where |T"‘ is the matrix
described in (13).

The final matrix, let us denote it by |Bl,m[,
thus relates the field quantities propagated into
the half space to those observed at the surface of
the model. Since there are no waves traveling
in the negative z direction in the basal half space,
the “E.° and ~E,° terms in |E°f are zero and
we may then write the following four equations
for the field quantities at the surface

H, = BytE, + BytE,>  (t5a)
H, = Byy*E," + By*E," (15b)
E, = By™E," + By*E," (150
E, = Ba*E,° + B4*E, 0  (15d)

We may now eliminate *E,," and TE,,° and solve
for E, and E, in terms of any specified H, and
H,. In this fashion we may arrive at the imped-
ance entries Z;;, mentioned earlier, relating the
E and H fields on the surface on an u-layered
anisotropic model. We have used the impedance
concept, rather than the admittance, to express
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the E’s as functions of the H’s. It may be shown
that the incident magnetic polarization is little
affected by the geology (anisotropy) and thus
the measured H field may be considered as the
input to a system of which E is the output.
From equations (15a) (15b) (15¢) and (15d)
we may also calculate the apparent resistivities
in the x and v direction from
1| E,;
pAz =
wpo | H,
1| E,
Pay =—|=7—
! Wo Hz

2

and

b

2

(16)

for the same model.

DISCUSSION

We will confine the discussion of the imped-
ance tensor to the anisotropic layered models
described above, realizing that any model may
be characterized in such a fashion. In the case of
an anisotropic half space or in the case of an
n-layered model possessing only one layer with
anisotropic conductivity, the diagonal of the Zj;
matrix

|E| = | 24| -] H|

may bereduced to zero by a rotation of the measur-
ing axes. This can be seen in equations (11) where
placing ¢ equal to zero leaves two independent
sets of equations in the x and y components.
Isotropic layers above or below the anisotropic
layer have no effect on the zeroing of the diagonal.

Let us consider any model which has been thus
reduced. We may then write

E1 = ZlH2
E2 = Zng

where the subscripts refer to measurements made
along the oy and o conductivity axes respec-
tively. For an anisotropic half space the Z’s are
the characteristic impedances defined by

_ ‘ (Z, — Z3) sin ¢ cos ¢
B —(Z5cost ¢ + Zisin?¢p) —(Z1 — Z2) cos ¢ sin ¢
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2y = (_’ﬂ) ilrid)
o2

and for the single anisotropic layer, sandwiched
in isotropic layers, Z, and Z; are the n-layer im-
pedances that would be measured if the aniso-
tropic layer were to be replaced with an isotropic
layer of conductivity a1 or ¢, respectively.

At any other measurement axis angle ¢ (Fig-
ure 1) E will be related to H through the follow-
ing matrix:

an

Zysin ¢ + Zycos’ ¢ .’H:z (18)

a,

Several interesting features of anisotropic im-
pedance can be illustrated using this tensor nota-
tion alone. For example, if we consider the condi-
tions under which one of the mcasured electric
field components could go to zcro, say Ey,, we

have
(19)
(20)

Ez = leHz + Z121Iy
0 = ZauH, + Zll,

and from (20) this results in

This is, of course, a trivial result if the matrix
happens to be reduced, Z»=0, simply indicating
that H is linearly polarized perpendicular to Eg;
this is also the case if H is oriented along the other
conductivity axis and E, is equal to zero. How-
ever, in the general case, when the matrix is not
reduced, H,/H, need only be a complex quantity
equal to —Ze/Zy to obtain a linearly polarized E
field. This is a general result not applicable only
to anisotropic models.

This situation has a simple implication in the
case of an anisotropic half space. The ratio,

Zon (Z1 — Z2) sin ¢ cos ¢
Zo1  Zocosté + Zisin? ¢
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F16. 3. Apparent resistivities for a two layer anisotropic model.

upon the substitution of relations (17), yields a
real number ratio that is independent of fre-
quency. This means that for this model a linearly
polarized H can result in a linearly polarized E
not at right angles to it. In the multilayered case
this ratio will, in general, be complex and will be
frequency dependent. However, it is quite possi-
ble that for a particular model a linearly po-
larized H could result in a linearly polarized E
not at right angles to it, but only at a particular
frequency. It must be noted that this result im-
plies reducing the diagonal to zero only at a par-
ticular frequency and not a general relationship

such as we have discussed above. If two or more
anisotropic layers are present, none of whose
conductivity axes are colinear, the diagonal can-
not in the general sense be reduced to zero. This
has also been pointed out by Mann (1965). The
failure of diagonalization attempts to zero the
diagonal with field data (Bostick & Smith, 1962)
need not imply difficulty with the sources, but
rather that effective anisotropy is a function of
depth.

This digression into the properties of impedance
tensors, which may seem to have been somewhat
belabored, allows some interesting observations
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on a traditionally measured magnetotelluric
quantity, the apparent resistivity. Consider the
case where H,/H,=—Z3/Zs, whether in the
simple cases discussed or for the general model.
Calculations of E,/H, will result in values of
zero for the apparent resistivity in the v direc-
tion. Moreover, for the model in which this ratio
depends on frequency and, of course, on ¢, a
very small change in ¢ at the critical frequency
could change the p4 value by orders of magnitude.
This is illustrated in the plot of p4 as a function of
period and angle ¢ in Figure 3. This particular
model did not, in fact, result in a zero for the criti-
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cal angle of 22.5 degrees and period of approxi-
mately 0.7 sec, but rather a minimum. Tt is quite
obvious from this example that large values of the
scatter in apparent resistivity results can be ac-
counted for by small changes in oricntation of the
magnetic field polarization. The rather peculiar
arrangement of the linearly polarized H at 45 de-
grees to the measuring axes, and the conductivity
axes ‘“rotating” with respect to the H field is
necessitated by the computer program logic
which was designed primarily for calculation of
the impedance elements.

As a further illustration of these points we have
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F1G. 5. Apparent resistivity for a four layer anisotropic model.

selected some early data of Fournier (1963b), Fig-
ure 4, in which he recognized the existence of a
pronounced directional property of the conduc-
tivity. Without attempting a detailed interpreta-
tion, impossible without the polarization informa-
tion, we have approximated Fournier’s results by
the model shown in Figure 5. It is clear that the
model results constitute an envelope for the ex-
perimental data, but it is also true that such a
simple model is at best a rough approximation to
the actual geology.

From the above discussion it is evident that
measurements of p4 and p4, are not sufficient to

characterize the model. In other words, E,/H,
and E,/H, only characterize the ground if it can
be shown that the diagonal of {he impedance ma-
trix can be reduced to zero, and by computational
rotation the E’s and H’s are thus measured in the
principal directions. This also implies, unfortu-
nately, that p4 data collected in the past, indicat-
ing a conductivity anisotropy, cannot be used in
the more detailed interpretation discussed in this
paper.
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